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J .  Phys.: Condens. Matter 2 (1990) 5679-5687. Printed in the UK 

The effect of pressure on incommensurate phases 

V A Golovko 
Moscow Evening Metallurgical Institute, Moscow 11 1250, USSR 

Received 28 December 1989 

Abstract. The effect of pressure on incommensurate phases is studied on the basis of 
thermodynamic theory. It is shown that there are two types of pressure-temperature phase 
diagram and the influence of the pressure on different properties of incommensurate crystals 
is clarified. The character of the diagram and of this influence depends on the type of the 
incommensurate phase (existence or absence of the Lifshitz invariant, and the order of the 
anisotropy invariant). The results are compared with experiments andshow good agreement. 

The effect of pressure (in general, uniaxial stresses) on phase transitions, particularly 
on those with the formation of an incommensurate (I) phase, has been considered in 
many experimental studies. In theoretical treatments of the I phase such an effect is 
usually described by introducing terms uip2 in the Landau thermodynamic potential, 
where U ,  are the strain tensor components (here and subsequently u1 = uxx, u2 = uyv and 
u3 = U J  and p2is the quadratic invariant composed of the order parameter components 
(Mashiyama 1980, Sannikov and Golovko 1984, Chapelle 1986). Exclusion of ui leads 
only to the appearance of an additional term, proportional to the pressure, in the 
coefficient of p2 in the thermodynamic potential, which means that the variation in 
pressure must shift identically all transition temperatures without any other changes. 
However, experimental data have proved to be more complex, which suggests that other 
invariants would be important in the problem in question. In general, a substantial role 
can be played by those invariants which give corrections, depending on pressure, to the 
thermodynamic potential coefficients that have small values, because relative variations 
in these coefficients will be especially large when the pressure increases. The thermo- 
dynamic potential of the I phase contains two small coefficients, that of p2  and that of 
the Lifshitz invariant (when a Lifshitz invariant exists, the I phase is often called type I;  
the case when the symmetry does not admit such an invariant, i.e. an I phase of the type 
11, will be considered below). 

Let us first obtain some general results. We assume that the structure is modulated 
along the x direction and we represent the thermodynamic potential 4 per unit length 
as 

where d is the period of the order parameter, 
not contain the strain tensor, and 

Here Aij are the elastic moduli of the parent (P) phase, ai are the components of the stress 

is the part of the density 4 which does 

4 2  uiFi + + A ~ U ~ U ,  - u ~ u , .  ( 2 )  
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tensor, and summation from 1 to 3 over the repeated indices is implied. We assume that 
thepphase hasorthorhombicsymmetry (as is the case with many crystals with an rphase); 
then the components ui are invariants. The quantities F, can be arbitrary invariants 
composed of the order parameter components. 

In minimising 4 with respect to U, the independent variables should be taken to 
be the components of the strain vector. Following a previously described procedure 
(Golovko 1985) and eliminating U, from ( p 2 ,  we get 

where xij are the elastic compliances (xii;ljk = a&). The strain tensor components aver- 
aged over space are found to be 

(4) 6. = x . . (a .  - I . ) .  
Y I  I 

Let us consider a two-dimensional order parameter with components r ]  and 5 written 
as r ]  = p cos q and = p sin Q, in polar coordinates. Since renormalisations of the 
coefficients of p2 and of the Lifshitz invariant p2 d q /dx  are of interest, the quantities Fj 
should be taken in the form 

Fi = Bbip2 + r i p 2  drpldx. ( 5 )  

Let us turn now to equation (3) for 42. The last term does not contain the order parameter 
and it can be omitted. The first two terms do not depend on a,. The quantity F:  gives 
fixed corrections to coefficients in &. Close to the P-I transition, where p and dq/& are 
constant inspace (see, e.g., Golovko 1980), the termswithI,I,renormalise thecoefficient 
of p4 in 41. Near the transition to the commensurate (c) phase the main role of these 
terms is that, owing to them, this transition becomes first order (Golovko 1985). If this 
fact is taken into account somewhat , the role of the terms with Z,Z, will be reduced to an 
effective renormalisation of the p4 coefficient in &. Then only the third term in (p2 
(equation (3)) will be essential. Amethod which greatly simplifies the problem and leads 
to an I-C transition of first order even without the first terms in equation (3), consists in 
utilising the constant-amplitude approximation, provided that the value of the amplitude 
p is determined by minimising q5 (Golovko 1980). Strictly speaking, the constant- 
amplitude approximation is valid only in the case of weak anisotropy in the space 
of order parameter components (Sannikov 1980); if the anisotropy is not weak, this 
approximation can be used for qualitative and semi-quantitative estimates. 

Let us write down the most essential terms in &, the above-mentioned renor- 
malisation of the coefficients being implied: 

dl = (a/2)p2 + (B/4)P4 + (Yn /n )P"  cos nq, 

- ap2 d q / d x  + (8/2)[(dp/dx)* + p 2 ( d ~ / d ~ ) 2 ] .  (6)  

Adding here the third term of 42 (equation (3)) and substituting equation ( 5 )  for F, leads 
only to replacement of LY and a by a* and cr* , respectively, with 

LY* = LY + a; ox = a +  ap LYp = xqb1q ap = - x l l r l ~ ~ *  (7) 

If the question is of a hydrostatic pressure (ai = u2 = a3 = - p )  one has 
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3 3 

= - bp ap = rp b = IC, X,b, r = 2 X,,Tr. (8) 
I =  1 ]=1 

For simplicity we shall discuss further only the effect of the pressure p. In the case of 
uniaxial stresses, one must utilise equation (7) for ap and ap instead of (8). 

Now we can analyse the influence of the pressure on I phases. First, let us consider 
the wavevector q of the incommensurate superstructure at the P-I transition. When 
p = 0 we have q = 0/6 (see, e.g., Golovko 1980). Replacing a by a* yields 

4 = 40 + ( d 4 P  qo = a/& (9) 

The wavevector qo is small (compared with an ordinary value, in this case with the 
reciprocal-lattice constant), whereas the coefficient r is, in general, of ordinary magni- 
tude. Therefore the pressure changes q appreciably. At p = 0 the point of the P-I 
transition is defined by the equation a = a2/6. Replacing a and U by a* and U * ,  

respectively, we get for this point, whenp # 0, 

a = -ap + a$ = a0 + bp + 2qorp + (1/6)r2p2 a0 = a2/6 a; = (a*)*/& 

(10) 
The temperature T, of the P-I transition can be found from (10) if, as usual, one assumes 
that a = aT( T - 6 ) .  At small p the shift of Ti is determined essentially by the term bp 
because qo is small. Making use of (4), one can obtain expressions for jumps of the 
thermal expansion coefficients and of the elastic moduli at Ti,  and also the pressure 
dependence of these jumps. It should be noted that invariants of type p2hiiuiu, which 
were not taken into account in (2), also play a role in the pressure dependence of the 
jumps (Luspin et af 1984). 

Next, let us consider the I-C transition ( a  = a,, T = T,). Here results depend on the 
integer n in the anisotropy invariant in (6). If n = 4 we denote, as usual, yn = p’ .  In this 
case, a, = -aoB where B depends only upon the ratio p’/p.  The p’ /p  dependence of 
B = Iac~/ao within the constant-amplitude approximation is shown in figure 2 of the 
paper by Golovko (1980). In order to evaluate a,, one can take a close value a = af at 
which the modulus of elliptic integrals equals unity. This gives 

B = (n2/4>(~/ip’i  - 1). (11) 

Proceeding as before, we obtain for a,, whenp # 0, 

a, = - a o B  + bp - 2qoBrp - (B/6)r2p2. 

Here, as in equation (lo), the mainp dependence is due to the term bp. Therefore, at 
smallp the lines Ti = Ti(p) and T, = T,(p) run almost parallel. An exception is the case 
of weak anisotropy when the ratio Ip’l/p is small and hence B is large. Strictly speaking, 
according to the discussion at the beginning of this paper, when p’ is small, equation (5) 
for Fi must be supplemented with a term containing p4 cos 4ip, but the qualitative result 
remains the same. 

The p-T phase diagrams resulting from equations (10) and (12) are shown sche- 
matically in figures 1 and 2. Note point A (figure 2) where a* = 0 (and hence q = 0). 
The I phase also exists above point A because the sign of U in (6) plays no role in the I 
phase (the sign of U and that of ri can be reversed in ( 5 )  and (6) by changing the sign of 
the coordinate x ;  therefore only the sign of the ratio a/ri is of importance). Naturally, 
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Figure 1. Phase diagram for u/r > 0. The broken 
curve is the curve where e* = 0 (if b < 0); curve 
1, n = 4; curve 2, n = 6. 

Figure 2. As for figure 1 but for u/r < 0: curve 3, 
n > 6 .  

at high pressures, terms that were discarded in the above treatment may modify some 
details of the phase diagrams. 

An example of a crystal having an I phase with n = 4 is (NH&BeF4. According to 
experimental data (Gesi and Ozawa 1974) the phase diagram of (NH&BeF, is of the 
type shown in figure 1. Comparison of the p dependence of the temperatures Ti and T, 
allows one to evaluate the magnitude of the anisotropy. Differentiating equations (10) 
and (12) with respect t o p  and taking into account that qo is small gives at p = 0 

(Ti - TS)/T[ = 2(1 + B)qor/b (13) 
where the primes denote derivatives of Ti and T, with respect top .  The value of r can be 
found from the pressure dependence of q according to (9); that of b can be extracted 
from other independent experiments (Sannikov and Golovko 1984). Knowing r/b,  from 
equation (13), one calculates B and hence p'//3. Because lack of data does not permit 
us to calculate r/b for (NH4)*BeF4 let us confine ourselves to semi-quantitative estimates. 
From dimension considerations it follows that generally b - u*r where U* is the recipro- 
cal-lattice constant. For (NH4)*BeF4, according to Kudo (1982), qO/u* = 0.025 and, 
according to Gesi and Ozawa (1974), (TI - TL)/T/  = -0.29; consequently, from (13) 
B = 4.8. Now from (11) we obtain that I/3'i/p = 4. 

Let us now consider the effect of pressure on other properties of incommensurate 
crystals with n = 4. Any expression for a physical quantity M in the I phase can be put 
into the form (see, e.g., Golovko 1980) 

= "a0 , /3", ' ' .) (14) 
where fi is a dimension factor, f is a dimensionless function, and the ellipsis stands for 
combinations of parameters which are not explicitly written down in (6). Suppose that 
A? does not contain ao, qo, p or T.  Then all the dependence on p and T will be due to 
cu*/a$; that is with increasing p ,  only a shift and rescaling on the temperature axis 
without change in the heights of peaks and jumps occur. An example of such a quantity 
is the dielectric permittivity in the case of ferroelectrics (Golovko 1980), the result just 
obtained being in agreement with the experiment (Gesi and Ozawa 1974) on (NH&BeF, 
up to the maximum pressure used of 7.2 kbar. The specific heat C, contains a factor T 
(Golovko 1980); therefore itsp dependence will be insignificant and due to the variation 
in the temperature interval where the I phase exists. The 1-c transition heat Q contains 
a factor aoTc (Golovko 1980), and the main p dependence of Q will be caused by the p 
dependence of a:; in particular, at point A (figure 2), Q becomes zero. 
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Next, let us consider the case when n = 6. Note that the dimensionless parameter 
which characterises the magnitude of the anisotropy is proportional to a; - qiv with 
v > 0 if n > 4 (Sannikov 1980). Therefore, when n > 4 the anisotropy is always weak 
and hence the constant-amplitude approximation is always satisfactory. In the work by 
Golovko (1980), only the n = 4 case was considered; proceeding likewise, instead of 
equations (7) of this reference, from equation (6) for n = 6 we get 

p 4  = 3m2aok2/81ylE2 

a = -(mpk/2E)d3,,I21VI[1 + (;r/2pkE)-(4E/K + 3k2 - 6)] 

where K and E are the complete elliptic integrals of the first and second kind, respect- 
ively, with the modulus k,  and y = yn. The thermodynamic potential can be written as 

(15) 

Cp = -(3n2aoPk2/32/ylE2)[1 - (n/pkE)d2a,-ly)/3(2 - k2 - 2E/K)]. (16) 

The I-c transition point a = a, is obtained by equating expression (16) and the 
thermodynamic potential of the c phase. The result can be substantially simplified when 
use is made of the fact that aoy/p2 is small; then the corresponding value k = k, 
approaches unity and is determined by the equation 

ao/rl/p2 = (3/2n2)(1 - k:)2K4(k,). 

Now from (15) we have in a first approximation (k,+ 1) 

from which we get t hep  dependence of a,: 

The corresponding p dependence of T, is represented by straight lines in figures 1 and 
2. In reality, the shape of the T,(p) curve is more complex and may be specified with the 
help of (15) and (17). However, in the vicinity of point A the phase diagram is such as 
shown in figure 2. In contrast with (12) the rp term in (19) does not contain the small 
factor 40; therefore the slopes of the curves T, = Ti(p) and T, = T,(p) a s p  + 0 can be 
quite different. We note that equations (17)-( 19) do not change if a p6 term is taken into 
account in (6), as usually done when n = 6, since the coefficient of this term vanishes 
from (17)-(19) in the limit of small aoy/p2. 

Let us discuss examples of the n = 6 crystals. For K2Se04, Rb2ZnC14 and K2ZnC1, 
the phase diagrams are of the type presented in figure 1 (Press et a1 1980, Kudo and Ikeda 
1981, Samara et a1 1981, Aleksandrova 1980, Gesi 1985), although in the cited papers 
there are disagreements as to the details of the diagrams. More serious discrepancies 
concern the diagram for Rb2ZnBr4 (Gesi 1985, Aleksandrova et a1 1987). An example 
of the diagram in figure 2 is that for [N(CH3)4]2ZnC14 (Marion et a1 1984) at high pressures 
(point A was not reached); at low pressures the diagram is complicated because of the 
occurrence of several c phases. 

For K2Se04 there are measurements permitting us to calculate r ;  this can be 
done in two ways. According to (9), r = 6 dq/dp. We find the value of dq/dp from a 
graph of Press et a1 (1980) putting U* = 8.28 X 1O’cm-l; this gives dq/dp = 
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3.3 x 
r/ao = 9 x 

cm dyn-'. Using the value of 6 (Sannikov and Golovko 1984)T we have 
cm3 dyn-'. On the other hand, from (10) and (19), one obtains at 

p = o  

d Ti/dp - d T,/dp = (npr/2aT)v3/2/y16 sgn 0. (20) 

Experiments by Press et a1 (1980), Kudo and Ikeda (1981) and Samara et a1 (1981) give 
2.5 K kbar-', 9.9 K kbar-' and 3.1 K kbar-', respectively, for TI - TL a t p  = 0. When 
use is made of the values (Sannikov and Golovko 1984) of the coefficients in (20), this 
equation yields 4, 15 and 5 x lo-'' cm3 dyn-l for r/a0. The above-calculated value of 
r/ao lies within this range. Such a large dispersion of the r/ao values is due to the marked 
disagreement between thep  dependences of Ti and, in particular, T, given by different 
workers, as mentioned above in the discussion of the phase diagrams. In connection 
with the above estimate b - a*r, note that, for K2Se04, Ibl = 1.6a*r, if one takes r/ao = 
9 x cm3 dyn-' and utilises the results of Sannikov and Golovko (1984) (b/2 = 
B1 + B2 + B3 and the values (24) of the above-cited paper are taken for Bi). 

At n = 6 the second dimensionless parameter in (14) is aoy/p2 which will depend on 
p after the substitution ao+ a;. Therefore, here the pressure dependence of quantities 
need not be the same as and, in general, is more complex than in the n = 4 case. Let us 
elucidate the main features of this dependence in terms of ferroelectrics. Denoting the 
corresponding component of the polarisation by Py, we supplement (equation (6)) 
with the terms 

Proceeding in the usual way (Golovko 1980) we get the dielectric susceptibility xyu as 
(for simplicity the renormalisation of y is not taken into account) 

Here we have also written the susceptibility < with respect to a field transforming like 
p3 cos 3 9  (in K2Se04-type crystals this is the elastic compliance xxyxy). Consider the 
value of xyy at the I-c transition (the peak of xyy). Substituting 1 - kz from 
and taking into account the relatively weak k dependence of K ( K  = 
as k +  l ) ,  one finds that the main p dependence of the xyy peak is due to the factor 
(a$ ) - l / a* .  Thus, for crystals having a phase diagram as in figure 1, the xyy peak 
decreases with increasing p ,  which agrees with experiment (Kudo and Ikeda 1981 , 
Samara et a1 1981, Gesi 1985). On approaching point A (figure 2) the value of the 
xyy peak should increase. Note the different behaviour of the xru peak in the cases n = 4 
and n = 6. The quantity < is 1 / ~ ~  in the P phase and 3 a $ / 8 / y l ~ i  + 1 / ~ ~  in the c phase. 
As the temperature decreases from Ti, < increases and undergoes an upward jump at 
T =  T,. The magnitude of the jump should be only weakly pressure dependent 

t The thermodynamic potential used by Sannikov and Golovko (1984) has coefficients which differ from those 
of (6) in the multipliers; in particular the present value of CY,, is twice that used by Sannikov and Golovko. Note 
that the above-mentioned paper contains errors and the most important are as follows: in (28) the exponent 
should be +3, in (30) the first two numbers should be 60 and -3, and in (22) 1.8 should read 2.7. 
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(-1/ln(4/10*1~/~)). Calculating the specific heat C, of the I phase and the heat Q of the 
I-C transition (Golovko 1980), we get, taking into account that k, -- 1 according to (17), 

C,(T= T,) = a$TC/2P[1 - l/K(kc)] Q = n2a0aTTc/4PK(kc).  (23) 

These expressions show that the pressure dependences of C, and Q are almost the same 
as in the case n = 4. 

Let us discuss in brief the case n > 6. Calculations analogous to those which have led 
to (19) allows one to write 

ac = bp - %*/4/(n-2) aT dTc/dp = b - [4r/(n - 2)]D sgn o* ) u * I ( ~ - ~ ) / ( ~ - ~ )  
(24) 

with 

Since the exponent of Io*I in the second term of the expression for d T,/dp is negative 
when n > 6, this term will prevail over the first term, and the value of dTc/dp will be 
large. This result agrees with the experimental phase diagrams given by Gesi (1986), 
namely at large n the temperature T, varies more rapidly with increasingp than at small 
n (note that n is equal to the doubled denominator of the fraction expressing the 
wavevector of the c phase in terms of a*) .  The behaviour of the I-c transition line near 
point A where o* = 0 is shown in figure 2. 

Now let us consider type I1 of the I phase when there is no Lifshitz invariant. For a 
system described by a one-component order parameter q the thermodynamic potential 
density & is 

41 = (a /2>r2  + (P/4)r4 + ( s /2>(dddx>2  + (A/2)(d2v/dX2)2. (25) 

Here we have retained only typical terms although other terms may be of importance in 
some cases (Ishibashi and Shiba 1978, Jacobs eta1 1984, Golovko 1988). The I phase can 
exist if 6 < 0, and the P-I transition occurs at a = a. while q = qo with 

a0 = 62/4A q; = -6/2A. (26) 

Since 161 - q;, now the coefficients which have small values are a and 6, and instead 
of (5) we take 

F ,  = ib ,q2 + iss,(dq/dx)2. (27) 

In the case of 41 (25) the I-C transition is first order (Ishibashi and Shiba 1978, Jacobs et 
a1 1984). Hence the role of the two first terms in (3) is not major and can be taken into 
account by renormalising the coefficients in 41 (cf the discussion after expression ( 5 ) ) .  
Therefore, again the expression for $1 must be supplemented only with the third term 
from &(equation (3)), which leads to replacing aand  6 by a* and 6* with a* determined 
by the same expressions (7) and (8) and 

3 

6* = 6 + 6 ,  6 ,  = xl]s,o] 6, = -sp s = X B S ,  (28) 
]=1  

where the second expression for 6, is written assuming the effect of hydrostatic 
pressure p. 
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Thep  dependence of the wavevector q at T = T, is found from (26). If 6 < 0 we get 
(the case 6 > 0 is considered below) 

= q o w  = 40 + ( s /4qo~)p .  (29) 
The second expression written in the limit of small p shows that here, because of the 
presence of the small factor qo in the denominator, the effect of pressure on q is much 
more pronounced than in the case of type I of the I phase (cf (9)). Thep  dependence of 
the P-I transition temperature is obtained from the first equation (26): 

a = a. + bp + qisp + (1/4A)s2p2. (30) 
The I-c transition at p = 0 occurs when a = -aoC with C = 4.60 according to 

Ishibashi and Shiba (1978) or C = 4.71 according to Jacobs et a1 (1984). Therefore thep 
dependence of the I-c transition temperature is given by 

a, -aoC + bp - qiCsp - (1/4A)Cs2p2. (31) 
Comparing equations (30) and (31) with (10) and (12) we see that, on the whole, the 
p-Tphase diagrams in this case are similar to those for the n = 4 I phase of type I with 
one essential exception. Since the condition 6* < 0 must hold, the I phase in figure 2 
exists only below point A if 6 < 0 (and s < 0) or only above point A if 6 > 0 (and s > 0). 
Here point A is a Lifshitz point where 6* = 0 and q = 0. 

Examples of crystals with an I phase of type I1 having the phase diagram presented 
in figure 1 are sodium nitrite (Gesi et a1 1965) and thiourea (Gesi 1969, Denoyer et a1 
1982). Crystals having a phase diagram as in figure 2 where the I phase exists below 
point A are [N(CH3)4]2CuBr4 at high p (Gesi and Ozawa 1982, Gesi 1986) and 
Cs2CdBr4 (Vlokh et al 1988); those where the I phase exists above point A include 
C204HNH44H20  (Krauzman et a1 1988). Note that the P-c transition above point A in 
[N(CH3)4]2C~Br4 is first order (Gesi and Ozawa 1982); therefore the form of the diagram 
in the vicinity of point A differs from that shown in figure 2. For this crystal, /3 < 0 in 
(25 ) ,  and a term with q6 must be taken into account. It should be mentioned that the 
sign of /3 may change when the pressure increases; the p dependence of /3 can be easily 
taken into account by adding a term with q4  to (27). 

Let us clarify what estimates can be obtained from the shape of the p-T phase 
diagram. From (30) and (31) we get the relation, a t p  = 0, 

(T:  - TL)/T: = (1 + C)qis/b. (32) 
This permits us to calculate s/b. For sodium nitrite (T :  - Tl ) /T :  = 0.125 (Gesi et a1 
1965) and qO/a* = 0.119 (Hoshino and Motegi 1967); putting C = 4.71 one has s/b = 
1 . 5 ( ~ * ) ~ .  Forthiourea (7': - TA)/T,' = -0.368(Gesi1969)andqo/a* = 0.125 (Shiozaki 
1971), which gives s/b = - 3 . l ( ~ * ) ~ ;  the same value of s/b is obtained for deuterated 
thiourea where (7': - TA)/T,' = -0.464 and qO/a* = 0.141 (Denoyer et a1 1982). On 
the other hand, since from dimension considerations, generally s - b(a*)', equation 
(32) permits us to estimate the value of qO/a* from the form of the p-T diagram. Note 
that, in like manner, qO/a* can be estimated also for an I phase of type I with n = 4, 
making use of (13) if /3'//3 is known. 

From (25) it follows that, for type I1 of the I phase, an expression of the type (14) 
contains only one dimensionless parameter &/ao - instead of the first two. As an 
example, let us consider again ferroelectrics where q in (25) means the polarisation. 
Then in the P phase the dielectric susceptibility x is l / a ,  and at the P-I transition, when 
a = ao, it is l/ao = 4A/d2. Therefore, for x we have h?l= A / S 2  in (14), and the function 
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fchanges from 4 at a = a. to a definite number at a = a,. From this it follows that, when 
increasingp, the susceptibility x will vary as (d*)-2 but the form of the curve x( T)  will 
remain unchanged except for rescaling on the Taxis. If the p-T diagram is that of figure 
1, x decreases with increasingp, which is observed in sodium nitrite (Gesi et aZ1965). 
The same is observed, on the whole, in thiourea but the form of the curve x( T )  and its 
variation are more complex because of the appearance of a ferroelectric phase in the 
region where the I phase exists (Gesi 1969, Shiozaki 197l),which is not described by & 
(equation (25)) (Jacobs et a1 1984). The p dependence of the specific heat C, and of 
the I-C transition heat Q are the same as for the I phase of type I at n = 4. 

In conclusion, we see that experimental studies of the effect of pressure on I phases 
may permit us to clarify such non-trivial questions as the type of the I phase, the value 
of the number n ,  the degree of anisotropy and the magnitude of the wavevector q .  It is 
not only the effect of pressure that the above results concern; analogous effects can be 
produced by varying, for example, the composition of mixed compounds since, in (8) 
and (28),p can be any scalar quantity. 
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